Basic trigonometry formula
- Perp./Hyp. = sin θ
- Base/Hyp. = cos θ
- Perp./Base = tan θ
- Base/Perp. = cot θ
- Hyp./Base = sec θ
- Hyp./Perp. = cosec θ
Baudhayana formula
( Hyp. )2 = ( Base )2 + ( Perp.)2
Some common trigonometric Formulas
- sin(A+B) = sin A cos B + cos A sin B
- sin(A-B) = sin A cos B – cos A sin B
- cos(A+B) = cos A cos B – sin A sin B
- cos(A-B) = cos A cos B + sin A sin B
- sin 2A = 2 sin A cos B
- cos 2A = cos2 A – sin2 A
- cos 2A = 1 – 2 sin2 A
- sin(A+B) + sin(A-B) = 2 sin A cos B
- sin(A+B) – sin(A-B) = 2 cos A sin B
- cos(A+B) + cos(A-B) = 2 cos A cos B
- cos(A+B) – cos(A-B) = -2 sin A sin B
Trigonometric Ratios
Trigonometry ratio table:
Table of trigonometrical ratios of some standard angels:
Angle | sin θ | cos θ | tan θ |
---|---|---|---|
00 | 0 | 1 | 0 |
300 | $$\frac{1}{2}$$ | $$\frac{\sqrt{3}}{2}$$ | $$\frac{1}{\sqrt{3}}$$ |
450 | $$\frac{1}{\sqrt{2}}$$ | $$\frac{1}{\sqrt{2}}$$ | 1 |
600 | $$\frac{\sqrt{3}}{2}$$ | $$\frac{1}{2}$$ | $$\sqrt{3}$$ |
900 | 1 | 0 | $$\infty $$ |
1200 | $$\frac{\sqrt{3}}{2}$$ | $$-\frac{1}{2}$$ | $$-\sqrt{3}$$ |
1350 | $$\frac{1}{\sqrt{2}}$$ | $$-\frac{1}{\sqrt{2}}$$ | -1 |
1500 | $$\frac{1}{2}$$ | $$-\frac{\sqrt{3}}{2}$$ | $$-\frac{1}{\sqrt{3}}$$ |
1800 | 0 | -1 | 0 |
2700 | -1 | 0 | $$-\infty $$ |
3600 | 0 | 1 | 0 |
Angle | cot θ | sec θ | cosec θ |
---|---|---|---|
00 | $$\infty $$ | 1 | $$\infty $$ |
300 | $$\sqrt{3}$$ | $$\frac{2}{\sqrt{3}}$$ | 2 |
450 | 1 | $$\sqrt{2}$$ | $$\sqrt{2}$$ |
600 | $$\frac{1}{\sqrt{3}}$$ | 2 | $$\frac{2}{\sqrt{3}}$$ |
900 | 0 | $$\infty $$ | 1 |
1200 | $$-\frac{1}{\sqrt{3}}$$ | -2 | $$\frac{2}{\sqrt{3}}$$ |
1350 | -1 | $$-\sqrt{2}$$ | $$\sqrt{2}$$ |
1500 | $$-\sqrt{3}$$ | $$-\frac{2}{\sqrt{3}}$$ | 2 |
1800 | $$-\infty $$ | -1 | $$\infty $$ |
2700 | -1 | 0 | $$\infty $$ |
3600 | $$\infty $$ | 1 | $$\infty $$ |
Relation between Trigonometric Ratios
- sin θ cosec θ = 1
- cos θ sec θ = 1
- tan θ cot θ = 1
- tan θ = sin θ/cos θ
- cot θ = cos θ/sin θ
- sin2 θ + cos2 θ = 1
- 1 + tan2 θ = sec2 θ
- 1 + cot2 θ = cosec2 θ
A. Trigonometric Ratios of acute angles
- Perp./Hyp. = sin θ
- Base/Hyp. = cos θ
- Perp./Base = tan θ
- Base/Perp. = cot θ
- Hyp./Base = sec θ
- Hyp./Perp. = cosec θ
B. Trigonometric ratios of allied angles
1. Trigonometric ratios of (-θ) in terms of (θ)
sin(-θ) = -sinθ
cos(-θ) = cosθ
tan(-θ) = -tanθ
cot(-θ) = -cotθ
sec(-θ) = secθ
cosec(-θ) = -cosecθ
2. Trigonometric ratios of (900-θ) in terms of (θ)
sin(900-θ) = cosθ
cos(900-θ) = sinθ
tan(900-θ) = cotθ
cot(900-θ) = tanθ
sec(900-θ) = cosecθ
cosec(900-θ) = secθ
3. Trigonometric ratios of (900+θ) in terms of (θ)
sin(900+θ) = cosθ
cos(900+θ) = -sinθ
tan(900+θ) = -cotθ
cot(900+θ) = -tanθ
sec(900+θ) = -cosecθ
cosec(900+θ) = secθ
4. Trigonometric ratios of (1800-θ) in terms of (θ)
sin(1800-θ) = sinθ
cos(1890-θ) = -cosθ
tan(1800-θ) = -tanθ
cot(1800-θ) = -cotθ
sec(1800-θ) = -secθ
cosec(1800-θ) = cosecθ
5. Trigonometric ratios of (1800+θ) in terms of (θ)
sin(1800+θ) = -sinθ
cos(1800+θ) = -cosθ
tan(1800+θ) = tanθ
cot(1800+θ) = cotθ
sec(1800+θ) = -secθ
cosec(1800+θ) = -cosecθ
6. Trigonometric ratios of (900+θ) in terms of (θ)
sin(2700-θ) = -cosθ
cos(2700-θ) = -sinθ
tan(2700-θ) = cotθ
cot(2700-θ) = tanθ
sec(2700-θ) = -cosecθ
cosec(2700θ) = -secθ
7. Trigonometric ratios of (900+θ) in terms of (θ)
sin(2700+θ) = -cosθ
cos(2700+θ) = sinθ
tan(2700+θ) = -cotθ
cot(2700+θ) = -tanθ
sec(2700+θ) = cosecθ
cosec(2700+θ) = -secθ
8. Trigonometric ratios of (3600-θ) in terms of (θ)
sin(3600-θ) = -sinθ
cos(3600-θ) = cosθ
tan(3600-θ) = -tanθ
cot(3600-θ) = -cotθ
sec(3600-θ) = secθ
cosec(3600-θ) = -cosecθ
9. Trigonometric ratios of (3600-θ) in terms of (θ)
sin(3600+θ) = sinθ
cos(3600+θ) = cosθ
tan(3600+θ) = tanθ
cot(3600+θ) = cotθ
sec(3600+θ) = secθ
cosec(3600+θ) = cosecθ
10. Trigonometric ratios of (n×3600±θ) in terms of (θ)
sin(n×3600±θ) = ±sinθ
cos(n×3600±θ) = cosθ
tan(n×3600±θ) = ±tanθ
cot(n×3600±θ) = ±cotθ
sec(n×3600±θ) = secθ
cosec(n×3600±θ) = ±cosecθ
C. Trigonometric ratios of compound angels
1. Trigonometric ratios of sum and difference of two angles
- sin(A+B) = sinA cosB + cosA sinB
- cos(A+B) = cosA cosB – sinA sinB
- sin(A-B) = sinA cosB – cosA sinB
- cos(A-B) = cosA cosB + sinA sinB
2. Transformation of product into sums of differences
- 2 sinA cosB = sin(A+B) + sin(A-B)
- 2 cosA sinB = sin(A+B) – sin(A-B)
- 2 cosA cosB = cos(A+B) + cos(A-B)
- 2 sinA sinB = cos(A+B) – cos(A-B)
3. Transformation of sum or difference into product
Suppose A+B=C and A-B=D
or $$ A = \frac{C+D}{2}$$ and $$B = \frac{C-D}{2}$$
- $$sinC+sinD = 2 sin \frac{C+D}{2} cos\frac{C-D}{2}$$
- $$sinC-sinD = 2 cos \frac{C+D}{2} sin\frac{C-D}{2}$$
- $$cosC+cosD = 2 cos \frac{C+D}{2} cos\frac{C-D}{2}$$
- $$cosC-cosD = 2 sin\frac{C+D}{2} sin\frac{D-C}{2}$$
4. Trigonometric ratios of sum of more than two angles
- sin(A+B+C) = sinA cosB cos C + cosA sinB cosC + cosA cosB sinC – sinA sinB sinC
- cos(A+B+C) = cosA cosB cosC – sinA sinB cosC – sinA cosB sinC – cosA sinB sinC
D. Trigonometric ratios of multiple and sub-multiple angles
Multiple angles: 2A, 3A, 4A ……
Sub-multiple angles : $$ \frac{A}{2}, \frac{A}{3}, \frac{A}{4}$$…….
1. Trigonometric ratios of an angle 2A in terms of angle A
- sin2A = 2sinA cosA
- cos2A = 1-2sin2A
- $$ \ tan2A = \frac{2tanA}{1-tan^2A}$$
2. Trigonometric ratios of sin2A and cos2A in terms of tanA
- $$ \ sin2A = \frac{2tanA}{1+tan^2A}$$
- $$ \ cos2A = \frac{1-tan^2A}{1+tan^2A}$$
3. Trigonometric ratios of an angle 3A in terms of angle A
- sin3A = 3 sinA – 4sin3A
- cos3A = 4 cos3A – 3 cosA
- $$ \ tan3A = \frac{3 tanA – tan^3A}{1-3 tan^2A}$$
4. Trigonometric ratios of an angle 180
- $$sin18^0 = \frac{-1+\sqrt{5}}{4}$$
- $$cos18^0 = \frac{\sqrt{10+2\sqrt{5}}}{4}$$
5. Trigonometric ratios of an angle 360
- $$ cos36^0 = \frac{1+\sqrt{5}}{4}$$
- $$ sin36^0 = \frac{\sqrt{10-2\sqrt{5}}}{4}$$
6. Trigonometric ratios of an angle A in terms of angle A/2.
- $$ sinA = 2 sin\frac{A}{2}cos\frac{A}{2}$$
- $$ cosA = 1- 2 sin^2\frac{A}{2}$$
- $$ tanA = \frac{2tan\frac{A}{2}}{1-tan^2\frac{A}{2}}$$
- $$ sinA = \frac{2tan\frac{A}{2}}{1+tan^2\frac{A}{2}}$$
- $$ cosA = \frac{1-tan^2\frac{A}{2}}{1+tan^2\frac{A}{2}}$$
7. Trigonometric ratios of an angle \(\frac{A}{2}\) in terms of cosA
- $$sin\frac{A}{2} = \pm \sqrt{\frac{1-cosA}{2}}$$
- $$cos\frac{A}{2} = \pm \sqrt{\frac{1+cosA}{2}}$$
- $$tan\frac{A}{2} = \pm \sqrt{\frac{1-cosA}{1+cosA}}$$
8. Trigonometric ratios of an angle \(\frac{A}{2}\) in terms of sinA
- $$sin\frac{A}{2} + cos\frac{A}{2} = \pm \sqrt{1+sinA}$$
- $$sin\frac{A}{2} – cos\frac{A}{2} = \pm \sqrt{1-sinA}$$
Series Expnsion of Trigonometric functions
- sin θ = θ – θ3/3! + θ5/5! – θ7/7! …..
- cos θ = 1 – θ2/2! + θ4/4! – θ6/6! …..
- tan θ = θ + θ3/3 + 2θ5/15 …..
Approximate Value
If is θ small
- sin θ ≈ θ
- cos θ ≈ 1
- tan θ ≈ θ
Average Value
- < sin θ > = < sin nθ > = 0
- < cos θ > = < cos nθ > = 0
- < sin2 θ > = < sin2 nθ > = 1/2
- < cos2 θ > = < cos2 nθ > = 1/2