- ( 1+x )n = 1+nx+[n( n-1)/2!] .x2 + [n(n-1)(n-2)/3!].x3 +……
- ( 1+x )-n = 1-nx+[-n( n+1)/2!] .x2 – [n(n+1)(n+2)/3!].x3 +……
If x<<1 then x2,x3,…. is negligible. so:
- (1+x ) -n ≈ 1-nx
- (1-x ) n ≈ 1-nx
- (1-x ) -n ≈ 1+nx
If x<<1 then x2,x3,…. is negligible. so:
( Hyp. )2 = ( Base )2 + ( Perp.)2
Table of trigonometrical ratios of some standard angels:
Angle | sin θ | cos θ | tan θ |
---|---|---|---|
00 | 0 | 1 | 0 |
300 | $$\frac{1}{2}$$ | $$\frac{\sqrt{3}}{2}$$ | $$\frac{1}{\sqrt{3}}$$ |
450 | $$\frac{1}{\sqrt{2}}$$ | $$\frac{1}{\sqrt{2}}$$ | 1 |
600 | $$\frac{\sqrt{3}}{2}$$ | $$\frac{1}{2}$$ | $$\sqrt{3}$$ |
900 | 1 | 0 | $$\infty $$ |
1200 | $$\frac{\sqrt{3}}{2}$$ | $$-\frac{1}{2}$$ | $$-\sqrt{3}$$ |
1350 | $$\frac{1}{\sqrt{2}}$$ | $$-\frac{1}{\sqrt{2}}$$ | -1 |
1500 | $$\frac{1}{2}$$ | $$-\frac{\sqrt{3}}{2}$$ | $$-\frac{1}{\sqrt{3}}$$ |
1800 | 0 | -1 | 0 |
2700 | -1 | 0 | $$-\infty $$ |
3600 | 0 | 1 | 0 |
Angle | cot θ | sec θ | cosec θ |
---|---|---|---|
00 | $$\infty $$ | 1 | $$\infty $$ |
300 | $$\sqrt{3}$$ | $$\frac{2}{\sqrt{3}}$$ | 2 |
450 | 1 | $$\sqrt{2}$$ | $$\sqrt{2}$$ |
600 | $$\frac{1}{\sqrt{3}}$$ | 2 | $$\frac{2}{\sqrt{3}}$$ |
900 | 0 | $$\infty $$ | 1 |
1200 | $$-\frac{1}{\sqrt{3}}$$ | -2 | $$\frac{2}{\sqrt{3}}$$ |
1350 | -1 | $$-\sqrt{2}$$ | $$\sqrt{2}$$ |
1500 | $$-\sqrt{3}$$ | $$-\frac{2}{\sqrt{3}}$$ | 2 |
1800 | $$-\infty $$ | -1 | $$\infty $$ |
2700 | -1 | 0 | $$\infty $$ |
3600 | $$\infty $$ | 1 | $$\infty $$ |
1. Trigonometric ratios of (-θ) in terms of (θ)
sin(-θ) = -sinθ
cos(-θ) = cosθ
tan(-θ) = -tanθ
cot(-θ) = -cotθ
sec(-θ) = secθ
cosec(-θ) = -cosecθ
2. Trigonometric ratios of (900-θ) in terms of (θ)
sin(900-θ) = cosθ
cos(900-θ) = sinθ
tan(900-θ) = cotθ
cot(900-θ) = tanθ
sec(900-θ) = cosecθ
cosec(900-θ) = secθ
3. Trigonometric ratios of (900+θ) in terms of (θ)
sin(900+θ) = cosθ
cos(900+θ) = -sinθ
tan(900+θ) = -cotθ
cot(900+θ) = -tanθ
sec(900+θ) = -cosecθ
cosec(900+θ) = secθ
4. Trigonometric ratios of (1800-θ) in terms of (θ)
sin(1800-θ) = sinθ
cos(1890-θ) = -cosθ
tan(1800-θ) = -tanθ
cot(1800-θ) = -cotθ
sec(1800-θ) = -secθ
cosec(1800-θ) = cosecθ
5. Trigonometric ratios of (1800+θ) in terms of (θ)
sin(1800+θ) = -sinθ
cos(1800+θ) = -cosθ
tan(1800+θ) = tanθ
cot(1800+θ) = cotθ
sec(1800+θ) = -secθ
cosec(1800+θ) = -cosecθ
6. Trigonometric ratios of (900+θ) in terms of (θ)
sin(2700-θ) = -cosθ
cos(2700-θ) = -sinθ
tan(2700-θ) = cotθ
cot(2700-θ) = tanθ
sec(2700-θ) = -cosecθ
cosec(2700θ) = -secθ
7. Trigonometric ratios of (900+θ) in terms of (θ)
sin(2700+θ) = -cosθ
cos(2700+θ) = sinθ
tan(2700+θ) = -cotθ
cot(2700+θ) = -tanθ
sec(2700+θ) = cosecθ
cosec(2700+θ) = -secθ
8. Trigonometric ratios of (3600-θ) in terms of (θ)
sin(3600-θ) = -sinθ
cos(3600-θ) = cosθ
tan(3600-θ) = -tanθ
cot(3600-θ) = -cotθ
sec(3600-θ) = secθ
cosec(3600-θ) = -cosecθ
9. Trigonometric ratios of (3600-θ) in terms of (θ)
sin(3600+θ) = sinθ
cos(3600+θ) = cosθ
tan(3600+θ) = tanθ
cot(3600+θ) = cotθ
sec(3600+θ) = secθ
cosec(3600+θ) = cosecθ
10. Trigonometric ratios of (n×3600±θ) in terms of (θ)
sin(n×3600±θ) = ±sinθ
cos(n×3600±θ) = cosθ
tan(n×3600±θ) = ±tanθ
cot(n×3600±θ) = ±cotθ
sec(n×3600±θ) = secθ
cosec(n×3600±θ) = ±cosecθ
1. Trigonometric ratios of sum and difference of two angles
2. Transformation of product into sums of differences
3. Transformation of sum or difference into product
Suppose A+B=C and A-B=D
or $$ A = \frac{C+D}{2}$$ and $$B = \frac{C-D}{2}$$
4. Trigonometric ratios of sum of more than two angles
Multiple angles: 2A, 3A, 4A ……
Sub-multiple angles : $$ \frac{A}{2}, \frac{A}{3}, \frac{A}{4}$$…….
1. Trigonometric ratios of an angle 2A in terms of angle A
2. Trigonometric ratios of sin2A and cos2A in terms of tanA
3. Trigonometric ratios of an angle 3A in terms of angle A
4. Trigonometric ratios of an angle 180
5. Trigonometric ratios of an angle 360
6. Trigonometric ratios of an angle A in terms of angle A/2.
7. Trigonometric ratios of an angle \(\frac{A}{2}\) in terms of cosA
8. Trigonometric ratios of an angle \(\frac{A}{2}\) in terms of sinA
If is θ small